If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52-x^2+2=10
We move all terms to the left:
52-x^2+2-(10)=0
We add all the numbers together, and all the variables
-1x^2+44=0
a = -1; b = 0; c = +44;
Δ = b2-4ac
Δ = 02-4·(-1)·44
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*-1}=\frac{0-4\sqrt{11}}{-2} =-\frac{4\sqrt{11}}{-2} =-\frac{2\sqrt{11}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*-1}=\frac{0+4\sqrt{11}}{-2} =\frac{4\sqrt{11}}{-2} =\frac{2\sqrt{11}}{-1} $
| 6y+3y-9=90 | | X2-23x+126=0 | | 15x–24=3x | | 5x+9x+8=180 | | 12(x+5)=114 | | 8x-2+4x+26=180 | | 3x+12+5x+6=90 | | p-7/3=-12 | | (2x+16)+(4x+3)=35 | | 3x-3(4-5x)=3(x-9) | | 1/10y=y+18 | | 15─2m=13 | | 5m^2=22m+15 | | m-1/4=-2 | | 34−(2c+4)=2(c+5)c | | m/7+7=-1 | | (2x-5)÷3=(5x-3)÷5 | | -3(y-3)=-7y+17 | | x+4x+14=244 | | X+2x-11=23 | | y+(–10)=6 | | 3n+1=33 | | 2(5-x)=25-2(3x-0,5) | | 4+3x=2x-7 | | 3(×-6)=2(x+6) | | 13x-11=2x | | 4x-5=9+6x | | 3*x+2=4 | | 100y+70+0=114y | | 2m-5m=-7+9 | | 3m^2-12m-20=0 | | R*2-21r+80=0 |